Running the Semtech LoRa Basics™ Modem LoRaWAN® Demo on a Nordic DevKit
Rev 1.0 Dec 15, 2022
This article describes how to setup the Nordic development environment, build the LoRaWAN® demo application, and download it to the target board. The target board is a Connected Development SX1262 LoRa® shield attached to a Nordic nRF52840-DK board via the Arduino connector.
For convenience, a pre-built version of the demo application is attached at the end of this article. It is ready to download to the target device and run.
Overview
The development environment includes:
· Windows 10
· Nordic nRF Command Line Tools
· Nordic nRF Connect SDK
· Microsoft Visual Studio Code IDE (VS Code)
· Nordic nRF Extensions to VS Code
· git
The application is derived from the LoRaWAN® example in the Semtech LoRa Basics™ Modem SDK at https://github.com/Lora-net/SWSD001. The original example runs on a STMicroeletronics NUCLEO-L476RG development board. Connected Development then ported it to the Nordic nRF Connect SDK.
The target hardware includes:
· Nordic nRF52840-DK development board.
· Connected Development SX1262 LoRa® radio board mounted to a carrier board with Arduino connectors and attached to the nRF52840-DK (Figure 1).
[image:]
References
1. Nordic self-paced hands-on online course: https://academy.nordicsemi.com/courses/nrf-connect-sdk-fundamentals
2. nRF Connect SDK Getting Started: https://www.nordicsemi.com/Products/Development-software/nRF-Connect-SDK/GetStarted#infotabs
3. Git version control system: https://git-scm.com
Install the Nordic tools and VS Code
The Nordic instructions say that either the Segger IDE or Visual Studio Code can be used. Connected Development has chosen to use VS Code.
Follow the Nordic procedures to install the nRF Command Line Tools, nRF Connect SDK, and VS Code. If you are new to the Nordic tools, you can follow the online course (Reference 1) to install the tools and learn how to build a project. If you don't want to complete the whole course now, you can stop after building the first “blinky” project. This will confirm you have the tools installed correctly and can perform builds.
Alternately, the tools can be installed directly (Reference 2).
The default installation folder for the SDK is under the user’s home folder. But it is recommended to override the default location to a directory close to the root, such as “C:\Nordic\v2.2.0\” (or whatever the SDK version is).
Install Git
If you don’t already have Git, install it for your Windows 10 system (Reference 3).
You can then run Git Bash, which gives the more traditional ‘Linux’ style interface, or Git CMD, which is a more ‘windows’ style command interface.
· Setup Git username and email (set to existing GitHub account):
> git config --global user.name "John Doe"
> git config --global user.email johndoe@connecteddev.com
· Make the working directory and navigate to it:
> mkdir C:\Source
> cd C:\Source
Git the application code
· The application is in the GitHub Connected Development repo “CD_LoRaBasicsModem_Demo". The latest version is on the default “main" branch. The application also includes a submodule that is a fork of the Semtech LoRa Basics™ Modem repo. Clone the repo and submodule to the working directory:
C:\Source> git clone --recurse-submodules https://github.com/ConnectedDevelopment/CD_LoRaBasicsModem_Demo.git
· Command output sample:
Cloning into 'CD_LoRaBasicsModem_Demo'...
remote: Enumerating objects: 74, done.
remote: Counting objects: 100% (74/74), done.
remote: Compressing objects: 100% (47/47), done.
remote: Total 74 (delta 29), reused 66 (delta 25), pack-reused 0
Receiving objects: 100% (74/74), 52.76 KiB | 1.05 MiB/s, done.
Resolving deltas: 100% (29/29), done.
Submodule 'LoRaBasicsModem_SWL2001' (https://github.com/ConnectedDevelopment/LoRaBasicsModem_SWL2001.git) registered for path 'LoRaBasicsModem_SWL2001'
Cloning into 'C:/Source/CD_LoRaBasicsModem_Demo/LoRaBasicsModem_SWL2001'...
remote: Enumerating objects: 948, done.
remote: Counting objects: 100% (948/948), done.
remote: Compressing objects: 100% (527/527), done.
remote: Total 948 (delta 440), reused 907 (delta 404), pack-reused 0
Receiving objects: 100% (948/948), 2.79 MiB | 6.88 MiB/s, done.
Resolving deltas: 100% (440/440), done.
Submodule path 'LoRaBasicsModem_SWL2001': checked out 'cd9d3be691d82d25f6edeacfb02996bf1291c709'
You should now have all the project code pulled down and are ready to import the project into VS Code.
Open the application folder in VS Code
This step chooses the folder that VS Code will use as its workspace.
· Go to “File → Open Folder…”
[image:]
· Navigate to the sub-directory of the application at:
C:\Source\CD_LoRaBasicsModem_Demo
[image:]
· Hit “Select Folder”.
If you followed the Nordic online course to build the sample “blinky” application, the following steps are the same. Only the specific application is different.
Confirm or set the following variables in the VS Code settings for the workspace (Ctrl+,) . Use your actual version:
· nrf-connect.toolchain.path: ${nrf-connect.toolchain:2.2.0}
· nrf-connect.topdir: ${nrf-connect.sdk:2.2.0}
Add the application(s)
This step adds the “Lorawan” project to the workspace.
· Click on the “nRF Connect” tab in the left side Activity bar.
· Select “Add an existing application” under the WELCOME section:
[image:]
· Navigate to the “Lorawan” project folder and select it:
[image:]
· Hit “Select Folder”.
· Now the “Lorawan” project shows up under the APPLICATIONS section:
[image:]
Configure OTAA Join credentials
Prior to building, the device credentials must be configured for Over-The-Air-Activation (OTAA). Open the file Application/lorawan_key_config.h and change the default values to your specific credentials:
#define LORAWAN_DEVICE_EUI_DEFAULT 0xFE, 0xFF, 0xFF, 0xFF, 0xFD, 0xFF, 0x02, 0x03
#define LORAWAN_JOIN_EUI_DEFAULT 0x00, 0x16, 0xC0, 0x01, 0xFF, 0xFE, 0x00, 0x01
#define LORAWAN_APP_KEY_DEFAULT 0x5A, 0x1F, 0xB0, 0x87, 0xF0, 0xF0, 0x00, 0xA0, 0x2D, 0xF5, 0x02, 0x12, 0x10, 0xA0, 0x50, 0x10
By default, the application region is configured for the US915 band.
Create a new build configuration
There is no build configuration created by default. One must be created prior to building the project. Refer to Figure 6 above for the following steps.
· Click on “Click to create one” to add a new build configuration.
· On the right side, configure the build. Open the Board drop list and select the “nrf52840dk_nrf52840” board.
· Select other options as shown above. When completed, click on “Build Configuration” to finish.
· Since we selected the option to “Build after generating configuration”, the project will begin building immediately. A manual build can be started by clicking on “Build” under the ACTIONS section.
· Open the output terminal window to see the build progress by clicking on “building” in the build status line in the lower right corner. When the build is finished, the memory sizes are displayed in the build terminal window:
[image:]
Configure the Join Server
Before running the application, the LoRaWAN® Join Server must be configured with the device credentials that are configured in lorawan_key_config.h (DEVICE_EUI, JOIN_EUI, and APP_KEY).
Download to the target
The last step is to download the build to the target board and run it.
· Connect a USB cable from the end connector on the Nordic nRF52840-DK board to the PC, as shown in Figure 1.
· Slide the ON/OFF switch to ON.
· In VS Code, open the CONNECTED DEVICES section and connect to the board. Click on the small plug icon at right side of the “VCOM0” port to open an NRF TERMINAL window. Select the “115200 8n1 rtscts:off” configuration. The application’s log messages will be displayed here.
· Under the ACTIONS section, click on “Flash” to download the build to the board.
[image:]
· After the download is finished, the board will automatically reset and the application will run.
· Log messages are displayed in the NRF TERMINAL window (see Figures 8 and 9). The example application performs an OTAA Join, then sends out data packets once every minute, indicated by the “TX DONE EVENT” and “Uplink count: n” logs below.
[image:]
· The Join Request might indicate several failed attempts before success. This is because the device sends the Join Request on a random channel, which might not be supported by the gateway. Each attempt chooses a different random channel until it finds a channel that is supported by the gateway.
· Once joined, data packets are sent out about once per minute.
Demo Application
The user can visit the URL https://www.connecteddev.com/reference-designs/downloads to find a pre-built version of the “Lorawan” demo application (Lorawan_vX.X.hex). It can be flashed to the target board using the Nordic Programmer, which can be accessed from the nRF Connect for Desktop application, or with a Segger J-Flash utility. It uses the default OTAA Join credentials shown above.

image2.tmp
X0 [Fle| et Selection View Go Run Teminal Help
@ Newrenrie e
[T —
£ Nevvinson aansinin
go_opmie ao
| ovemrodeomkamo
> Ope Workpeceiom Fle
Openecrt >
;3 T
[PT—
Soeorspace
@ ‘Duplicate Workspace

image3.tmp
20 Open Foder
€ e S > COLoRRModem, Demo

© 5] OLohodeme o
> e

> & bowts
pP————

x

o 0 sencossmsmcniose

wasiom
s

e
Fetoder
Fitode

image4.tmp
Q Fe G Suscion View Go Rum Temmind Hep NowkcVSCode Sumple.Code - Viewl SdoCode

O 0 openwekome e

-
B

=3

<=

image5.tmp
0 selct Folder
€ e Cotchciudem Oeme » Laaw

gz Newteder
5 COtchticiadem e~ i
Y
[,
> i v
5] eatwicttodem 02
> 4 ten
i
g
ainass

o | o sertomn

Oemosies e

s [tormon

image6.tmp
A i Conigraion

image7.tmp

image8.tmp

image9.tmp

image1.tmp

